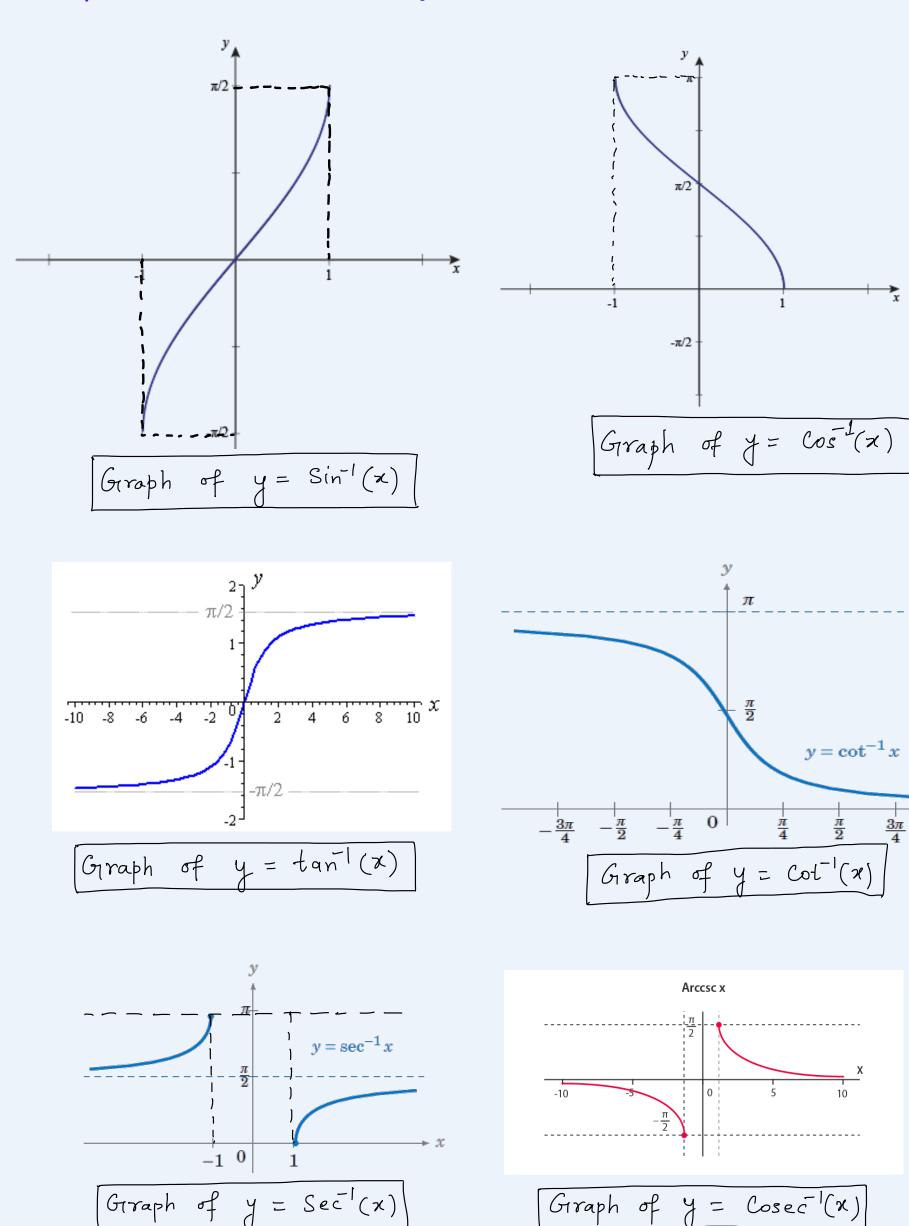
Inverse Trigonometric Functions important formulae

Friday, 11 February 2022 10:24 PM

Inverse Trigonometric Functions Graphs



$\frac{P-1}{2}$ (i) Sin $\left(\sin^{-1}(x)\right) = x$ $\left[x\right] \le 1$ or $x \in [-1, 1]$ $Cos(Cos'(x)) = x |x| \le 1 or x \in [-1,1]$

Properties of Inverse Trigonometric Functions:

3
$$\tan(\tan(x)) = x$$
 $x \in R$
4 $\cot(\cot(x)) = x$ $x \in R$

 $\cos^{-1}(-x) = \pi - \cos^{-1}(x) \times e^{-1}$

Sec
$$(Sec^{-1}(x)) = x$$
 $|x| \ge 1$ or $x \in (-\omega, -1] \cup [1, \omega)$
6. Cosec $(Cosec^{-1}(x)) = x$ $|x| \ge 1$ or $x \in (-\omega, -1] \cup [1, \omega)$

$$\mathbb{O} \quad \operatorname{Sin}^{-1}(-x) = -\operatorname{Sin}^{-1}(x) \qquad \chi \in [-1, 1]$$

3.
$$\tan^{-1}(-x) = -\tan^{-1}(x)$$
 $x \in \mathbb{R}$
4. $\sec^{-1}(-x) = TT - \sec^{-1}(x)$ $x \in (-\infty, -1]$ $U[1, \infty)$

(5)
$$Cosec^{-1}(-x) = -Cosec^{-1}(x) \quad x \in (-\infty, -1] \cup [1, \infty)$$

(6) $Cot^{-1}(-x) = \pi - Cot^{-1}(x) \quad x \in \mathbb{R}$

 $Sin^{-1}(x) = Cosec^{-1}(\frac{1}{2})$; $x \in [-1, 1]$; $x \neq 0$

 $\operatorname{Cosec}^{-1}(x) = \operatorname{Sin}^{-1}(1/x) ; x \in (-\infty, -1] \cup [1, \infty)$

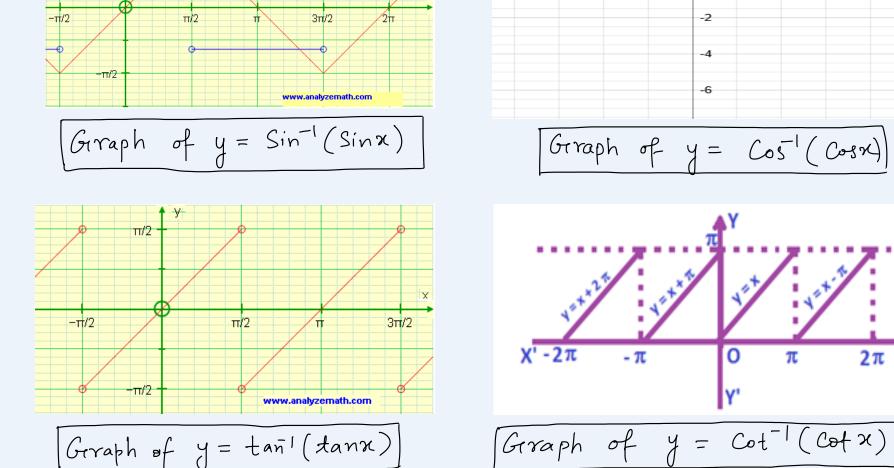
(2·)

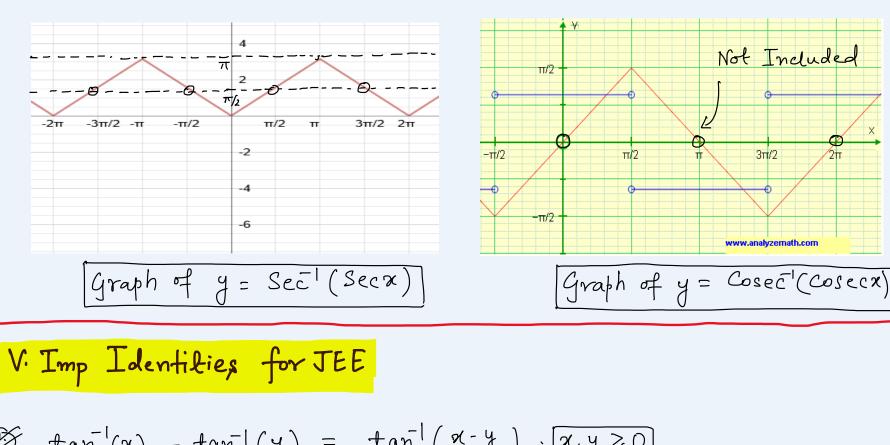
$$Cot^{-1}(x) = \begin{bmatrix} tan^{-1}(x) & x > 0 \\ T + tan^{-1}(x) & x < 0 \end{bmatrix}$$

$$\frac{\text{limp}}{\text{(i)}} \quad \text{Sin}^{-1}(x) + \text{Cos}^{-1}(x) = \frac{71}{2} ; x \in [-1, 1]$$

2 $\tan^{-1}(x) + \cot^{-1}(x) = \pi/2$; $x \in \mathbb{R}$

(3) Sec'(x) + Cosec'(x) = TV_2 ; $\chi \in (-\infty, -1] \cup [1, \infty)$





2π X

$$x^{2}+y^{2} \ge$$
(5) $\cos^{-1}(x) + \cos^{-1}(y) = \cos^{-1}(xy - \sqrt{1-x^{2}} \sqrt{1-y^{2}}) \circ (x, y \le 1)$

(a)
$$\cos^{-1}(x) - \cos^{-1}(y) = \left[\cos^{-1}(xy + \sqrt{1-x^2}\sqrt{1-y^2}) \right] = \left[-\cos^{-1}(xy + \sqrt{1-x^2}\sqrt{1-$$